
Introduction to MATLAB

for Engineers, Third Edition

William J. Palm III

Chapter 3

Functions and 

Files

PowerPoint to accompany

Copyright © 2010. The McGraw-Hill Companies, Inc. 



Exponential
exp(x)

sqrt(x)

Logarithmic
log(x)

log10(x)

Exponential; e x

Square root; x

Natural logarithm; ln x

Common (base 10) logarithm; 

log x = log10 x

(continued…)

Common mathematical functions:



Some common mathematical functions (continued)

Complex

abs(x)

angle(x)

conj(x) 

imag(x)

real(x)

Absolute value.

Angle of a complex number.

Complex conjugate.

Imaginary part of a complex number.

Real part of a complex number.

(continued…)



Some common mathematical functions 

(continued)

Numeric

ceil(x)

fix(x)

floor(x) 

round(x)

sign(x)

Round to nearest integer toward ∞.

Round to nearest integer toward zero.

Round to nearest integer toward -∞.

Round toward nearest integer.

Signum function:

+1 if x > 0; 0 if x = 0; -1 if x < 0.



Operations on Arrays

MATLAB will treat a variable as an array automatically. 

For example, to compute the square roots of 5, 7, and 

15, type

>>x = [5,7,15];

>>y = sqrt(x)

y =

2.2361    2.6358    3.8730



Expressing Function Arguments

We can write sin 2 in text, but MATLAB requires 

parentheses surrounding the 2 (which is called the 

function argument or parameter). 

Thus to evaluate sin 2 in MATLAB, we type sin(2). The 

MATLAB function name must be followed by a pair of 

parentheses that surround the argument. 

To express in text the sine of the second element of the 
array x, we would type sin[x(2)]. However, in MATLAB 

you cannot use square brackets or braces in this way, 
and you must type sin(x(2)).

(continued …)



Expressing Function Arguments (continued)

To evaluate sin(x 2 + 5), you type sin(x.^2 + 5).

To evaluate sin(x+1), you type sin(sqrt(x)+1).

Using a function as an argument of another function is 

called function composition. Be sure to check the order of 

precedence and the number and placement of 

parentheses when typing such expressions. 

Every left-facing parenthesis requires a right-facing mate. 

However, this condition does not guarantee that the 

expression is correct!



Expressing Function Arguments (continued)

Another common mistake involves expressions like 

sin2 x, which means (sin x)2.

In MATLAB we write this expression as 
(sin(x))^2, not as sin^2(x), sin^2x, 

sin(x^2), or sin(x)^2!



Expressing Function Arguments (continued)

The MATLAB trigonometric functions operate in radian 
mode. Thus sin(5) computes the sine of 5 rad, not the 

sine of 5°. 

To convert between degrees and radians, use the relation 

qradians = (p /180)qdegrees.



cos(x)

cot(x) 

csc(x)

sec(x)

sin(x)

tan(x)

Cosine; cos x.

Cotangent; cot x.

Cosecant; csc x.

Secant; sec x.

Sine; sin x.

Tangent; tan x.

Trigonometric functions:



Inverse Trigonometric functions:

acos(x)

acot(x)

acsc(x)

asec(x)

asin(x)

atan(x)

atan2(y,x)

Inverse cosine; arccos x.

Inverse cotangent; arccot x.

Inverse cosecant; arccsc x.

Inverse secant; arcsec x.

Inverse sine; arcsin x .

Inverse tangent; arctan x .

Four-quadrant inverse 

tangent. 



Hyperbolic cosine

Hyperbolic cotangent.

Hyperbolic cosecant

Hyperbolic secant

Hyperbolic sine

Hyperbolic tangent

cosh(x)

coth(x)

csch(x)

sech(x)

sinh(x)

tanh(x)

Hyperbolic functions:



Inverse Hyperbolic functions:

acosh(x) 

acoth(x) 

acsch(x) 

asech(x) 

asinh(x) 

atanh(x)

Inverse hyperbolic cosine

Inverse hyperbolic cotangent

Inverse hyperbolic cosecant

Inverse hyperbolic secant

Inverse hyperbolic sine

Inverse hyperbolic tangent;



User-Defined Functions

The first line in a function file must begin with a function 

definition line that has a list of inputs and outputs. This line 

distinguishes a function M-file from a script M-file. Its syntax is 

as follows:

function [output variables] = name(input variables)

Note that the output variables are enclosed in square 

brackets, while the input variables must be enclosed with 
parentheses. The function name  (here, name) should be the 

same as the file name in which it is saved (with the .m 

extension).



User-Defined Functions: Example

function z = fun(x,y)

u = 3*x;

z = u + 6*y.^2;

Note the use of a semicolon at the end of the lines. This 
prevents the values of u and z from being displayed. 

Note also the use of the array exponentiation operator 
(.^). This enables the function to accept y as an array.

(continued …)



User-Defined Functions: Example (continued)

Call this function with its output argument:

>>z = fun(3,7)

z =

303

The function uses x = 3 and y = 7 to compute z.

(continued …)



User-Defined Functions: Example (continued)

Call this function without its output argument and try to 

access its value. You will see an error message.

>>fun(3,7)

ans =

303

>>z

??? Undefined function or variable ’z’.

(continued …)



User-Defined Functions: Example (continued)

Assign the output argument to another variable:

>>q = fun(3,7)

q =

303

You can suppress the output by putting a semicolon after 

the function call.

For example, if you type q = fun(3,7); the value of q

will be computed but not displayed (because of the 

semicolon).



Local Variables: The variables x and y are local to the 

function fun, so unless you pass their values by naming 

them x and y, their values will not be available in the 

workspace outside the function. The variable u is also 

local to the function. For example,

>>x = 3;y = 7;

>>q = fun(x,y);

>>x

x =

3

>>y

y =

7

>>u

??? Undefined function or variable ’u’.



Only the order of the arguments is important, not the 

names of the arguments:

>>x = 7;y = 3;

>>z = fun(y,x) 

z =

303

The second line is equivalent to z = fun(3,7).



You can use arrays as input arguments:

>>r = fun(2:4,7:9)

r =

300    393    498



A function may have more than one output. These are 

enclosed in square brackets. 

For example, the function circle computes the area A 

and circumference C of a circle, given its radius as an 

input argument.

function [A, C] = circle(r)

A = pi*r.^2;

C = 2*pi*r;



The function is called as follows, if the radius is 4.

>>[A, C] = circle(4)

A =

50.2655

C =

25.1327



A function may have no input arguments and no output 

list.

For example, the function show_date clears all 

variables, clears the screen, computes and stores the 
date in the variable today, and then displays the value of 

today.

function show_date

clear

clc

today = date



1. One input, one output:

function [area_square] = square(side)

2. Brackets are optional for one input, one output:

function area_square = square(side)

3. Two inputs, one output:

function [volume_box] = box(height,width,length)

4. One input, two outputs:

function [area_circle,circumf] = circle(radius)

5. No named output:  function sqplot(side)

Examples of Function Definition Lines



Function Example

function [dist,vel] = drop(g,vO,t);

% Computes the distance travelled and the

% velocity of a dropped object, 

% as functions of g, 

% the initial velocity vO, and 

% the time t.

vel = g*t + vO;

dist = 0.5*g*t.^2 + vO*t;

(continued …)



Function Example (continued)

1. The variable names used in the function definition may, 

but need not, be used when the function is called:

>>g = 32.2;

>>initial_speed = 10;

>>time = 5;

>>[feet_dropped,speed] = . . . 

drop(a,initial_speed,time)

(continued …)



Function Example (continued)

2. The input variables need not be assigned values 

outside the function prior to the function call:

[feet_dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays:

[feet_dropped,speed]=drop(32.2,10,0:1:5)

This function call produces the arrays feet_dropped

and speed, each with six values corresponding to the six 

values of time in the array time.



Local Variables

The names of the input variables given in the function 

definition line are local to that function.

This means that other variable names can be used when 

you call the function.

All variables inside a function are erased after the function 

finishes executing, except when the same variable names 

appear in the output variable list used in the function call.



Methods for Calling Functions

There are four ways to invoke, or “call,” a function into 

action. These are:

1. As a character string identifying the appropriate 

function M-file,

2. As a function handle,

3. As an “inline” function object, or

4. As a string expression.

(continued …)




