
Introduction to MATLAB

for Engineers, Third Edition

William J. Palm III

Chapter 4
Programming with MATLAB

PowerPoint to accompany

Copyright © 2010. The McGraw-Hill Companies, Inc. 



Algorithms and Control Structures

Algorithm: an ordered sequence of precisely defined 

instructions that performs some task in a finite amount of 

time. Ordered means that the instructions can be numbered, 

but an algorithm must have the ability to alter the order of its 

instructions using a control structure. There are three 

categories of algorithmic operations:

Sequential operations: Instructions executed in order.

Conditional operations:  Control structures that first ask a 

question to be answered with a true/false answer and then 

select the next instruction based on the answer.

Iterative operations (loops): Control structures that repeat 

the execution of a block of instructions.



Structured Programming

A technique for designing programs in which a hierarchy 

of modules is used, each having a single entry and a 

single exit point, and in which control is passed 

downward through the structure without unconditional 

branches to higher levels of the structure. 

In MATLAB these modules can be built-in or user-

defined functions.



Advantages of structured programming

1. Structured programs are easier to write because the 
programmer can study the overall problem first and 
then deal with the details later.

2. Modules (functions) written for one application can be 
used for other applications (this is called reusable 
code).

3.  Structured programs are easier to debug because each 
module is designed to perform just one task and thus it 
can be tested separately from the other modules.



Advantages of structured programming 

(continued)

4. Structured programming is effective in a teamwork 

environment because several people can work on a 

common program, each person developing one or 

more modules.

5.  Structured programs are easier to understand and 

modify, especially if meaningful names are chosen for 

the modules and if the documentation clearly identifies 

the module’s task.



Steps for developing a computer solution:

1. State the problem concisely.

2. Specify the data to be used by the program. This is the 

“input.”

3. Specify the information to be generated by the program. 

This is the “output.”

4.  Work through the solution steps by hand or with a 

calculator; use a simpler set of data if necessary.



Steps for developing a computer solution (continued)

5. Write and run the program.

6. Check the output of the program with your hand solution.

7. Run the program with your input data and perform a 
reality check on the output.

8.  If you will use the program as a general tool in the 
future, test it by running it for a range of reasonable 
data values; perform a reality check on the results.



Effective documentation can be accomplished with 

the use of

1. Proper selection of variable names to reflect the 

quantities they represent.

2. Use of comments within the program.

3. Use of structure charts.

4. Use of flowcharts.

5.  A verbal description of the program, often in 

pseudocode.



Documenting with Charts

Two types of charts aid in developing structured 

programs and in documenting them. 

These are structure charts and flowcharts.

A structure chart is a graphical description showing how 

the different parts of the program are connected 

together.



Flowcharts are useful for developing and 

documenting programs that contain conditional 

statements, because they can display the various 

paths (called “branches”) that a program can take, 

depending on how the conditional statements are 

executed.



Flowchart representation of 

the if statement.



Documenting with Pseudocode

We can document with pseudocode, in which natural 

language and mathematical expressions are used to 

construct statements that look like computer 

statements but without detailed syntax.

Each pseudocode instruction may be numbered, but 

should be unambiguous and computable.



Finding Bugs

Debugging a program is the process of finding and 

removing the “bugs,” or errors, in a program. Such 

errors usually fall into one of the following categories.

1. Syntax errors such as omitting a parenthesis or 

comma, or spelling a command name incorrectly. 

MATLAB usually detects the more obvious errors and 

displays a message describing the error and its 

location.

2.  Errors due to an incorrect mathematical procedure. 

These are called runtime errors.  They do not 

necessarily occur every time the program is executed; 

their occurrence often depends on the particular input 

data. A common example is division by zero.



To locate a runtime error, try the following:

1. Always test your program with a simple version of the 

problem, whose answers can be checked by hand 

calculations.

2. Display any intermediate calculations by removing 

semicolons at the end of statements.



3. To test user-defined functions, try commenting out 
the function line and running the file as a script.

4.  Use the debugging features of the 

Editor/Debugger, which is discussed in Section 4.8.



Development of Large Programs

1. Writing and testing of individual modules (the unit-

testing phase).

2.  Writing of the top-level program that uses the 

modules (the build phase). Not all modules are 

included in the initial testing. As the build proceeds, 

more modules are included.



3. Testing of the first complete program (the alpha release

phase). This is usually done only in-house by technical 

people closely involved with the program development. 

There might be several alpha releases as bugs are 

discovered and removed.

4.  Testing of the final alpha release by in-house personnel 

and by familiar and trusted outside users, who often 

must sign a confidentiality agreement. This is the beta 

release phase, and there might be several beta 

releases.



Relational operators

Operator  Meaning

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

== Equal to.

~= Not equal to.



For example, suppose that x = [6,3,9] and y = 

[14,2,9]. The following MATLAB session shows 

some examples.

>>z = (x < y)

z =

1   0   0

>>z = (x ~= y)

z =

1   1   0

>>z = (x > 8)

z =

0   0   1



The relational operators can be used for array addressing. 

For example, with x = [6,3,9] and y = [14,2,9], 

typing 

z = x(x<y)

finds all the elements in x that are less than the 
corresponding elements in y. The result is z = 6.



The arithmetic operators +, -, *, /, and \ have precedence 

over the relational operators.  Thus the statement 

z = 5 > 2 + 7

is equivalent to

z = 5 >(2+7)

and returns the result z = 0.

We can use parentheses to change the order of 
precedence; for example, z = (5 > 2) + 7 evaluates 

to z = 8.



The logical Class

When the relational operators are used, such as

x = (5 > 2)

they create a logical variable, in this case, x. 

Prior to MATLAB 6.5 logical was an attribute of any 

numeric data type. Now logical is a first-class data 

type and a MATLAB class, and so logical is now 

equivalent to other first-class types such as 

character and cell arrays. 

Logical variables may have only the values 1 (true) 

and 0 (false).



Just because an array contains only 0s and 1s, however, it 

is not necessarily a logical array. For example, in the 
following session k and w appear the same, but k is a 

logical array and w is a numeric array, and thus an error 

message is issued.

>>x = -2:2; k = (abs(x)>1)

k =

1   0   0    0    1

>>z = x(k)

z =

-2   2

>>w = [1,0,0,0,1]; v = x(w)

??? Subscript indices must either be real 

positive... integers or logicals.



Accessing Arrays Using Logical Arrays

When a logical array is used to address another array, 

it extracts from that array the elements in the 

locations where the logical array has 1s.

So typing A(B), where B is a logical array of the 

same size as A, returns the values of A at the indices 

where B is 1.



Specifying array subscripts with logical arrays extracts the 

elements that correspond to the true (1) elements in the 

logical array.

Given A =[5,6,7;8,9,10;11,12,13] and B = 

logical(eye(3)), we can extract the diagonal elements 

of A by typing C = A(B) to obtain C = [5;9;13].



Operator Name Definition

~ NOT ~A returns an array the same dimension as A; the new 

array has ones where A is zero and zeros where A is 

nonzero.

& AND A & B returns an array the same dimension as A and B; 

the new array has ones where both A and B have  

nonzero elements and zeros where either A or B is zero.

| OR A | B returns an array the same dimension as A and B; 

the new array has ones where at least one element in A 

or B is nonzero and zeros where A and B are both zero.

Logical operators

Table



Operator Name Definition

&& Short-Circuit AND Operator for scalar logical expressions. A && B returns 

true if both A and B evaluate to true, and false if they do 

not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B returns 

true if either A or B or both evaluate to true, and false if 

they do not.

Table (continued)



Precedence Operator type

First Parentheses; evaluated starting with the 

innermost pair.

Second Arithmetic operators and logical NOT (~); 

evaluated from left to right.

Third Relational operators; evaluated from left to 

right.

Fourth Logical AND.

Fifth Logical OR.

Order of precedence for operator types.  



Logical function Definition

all(x) Returns a scalar, which is 1 if all the elements in the vector 

x

are nonzero and 0 otherwise.
all(A) Returns a row vector having the same number of columns as

the matrix A and containing ones and zeros, depending on 

whether or not the corresponding column of A has all nonzero 

elements.
any(x) Returns a scalar, which is 1 if any of the elements in the vector x 

is nonzero and 0 otherwise.

any(A) Returns a row vector having the same number of columns as

A and containing ones and zeros, depending on whether or not 

the corresponding column of the matrix A contains any nonzero 

elements.
finite(A) Returns an array of the same dimension as A with ones 

where
the elements of A are finite and zeros elsewhere.

Logical functions:  Table



Logical function Definition

ischar(A) Returns a 1 if A is a character array 

and 0 otherwise.
isempty(A) Returns a 1 if A is an empty matrix and 

0 otherwise.
isinf(A) Returns an array of the same 

dimension as A, with ones where

A has ‘inf’ and zeros elsewhere.

isnan(A) Returns an array of the same 

dimension as A with ones where

A has ‘NaN’ and zeros elsewhere. 

(‘NaN’ stands for “not a

number,” which means an undefined 

result.)

Table (continued)



Table (continued)

isnumeric(A) Returns a 1 if A is a numeric 
array and 0 otherwise.

isreal(A) Returns a 1 if A has no 
elements with imaginary parts 
and 0 otherwise.

logical(A) Converts the elements of the 
array A into logical values.

xor(A,B) Returns an array the same 
dimension as A and B; the new 
array has ones where either A 
or B is nonzero, but not both, 
and zeros where A and B are 
either both nonzero or both
zero.



The find Function

find(A)

[u,v,w] = find(A)

Computes an array 
containing the indices of 
the nonzero elements of 
the array A.

Computes the arrays u and 
v containing the row and 
column indices of the 
nonzero elements of the 
array A and computes the 
array w containing the 
values of the nonzero 
elements. The array w
may be omitted.



Logical Operators and the find Function

Consider the session

>>x = [5, -3, 0, 0, 8];y = [2, 4, 0, 5, 7];

>>z = find(x&y)

z =

1    2    5

Note that the find function returns the indices, and not the 

values.



Note that the find function returns the indices, and not the 

values. 

In the following session, note the difference between the 
result obtained by y(x&y) and the result obtained by 

find(x&y) in the previous slide.

>>x = [5, -3, 0, 0, 8];y = [2, 4, 0, 5, 7];

>>values = y(x&y)

values =

2 4 7

>>how_many = length(values)

how_many =

3



The if Statement

The if statement’s basic form is

if logical expression

statements
end

Every if statement must have an accompanying end 

statement. The end statement marks the end of the 

statements that are to be executed if the logical 

expression is true.



The else Statement

The basic structure for the use of the else statement is

if logical expression

statement group 1
else

statement group 2
end



Flowchart of the else 

structure.



When the test, if logical expression, is performed, 

where the logical expression may be an array, 

the test returns a value of true only if all the 

elements of the logical expression are true! 



For example, if we fail to recognize how the test works, the 

following statements do not perform the way we might 

expect.

x = [4,-9,25];

if x < 0

disp(’Some of the elements of x are 

negative.’)

else

y = sqrt(x)

end

When this program is run it gives the result

y =

2 0 + 3.000i 5



Instead, consider what happens if we test for x positive.

x = [4,-9,25];

if x >= 0

y = sqrt(x)

else

disp(’Some of the elements of x are 

negative.’)

end

When executed, it produces the following message: 

Some of the elements of x are negative. 



The statements

if logical expression 1

if logical expression 2

statements

end

end

can be replaced with the more concise program

if logical expression 1 & logical expression 2

statements

end



The elseif Statement

The general form of the if statement is

if logical expression 1

statement group 1

elseif logical expression 2

statement group 2

else

statement group 3

end

The else and elseif statements may be omitted if not 

required. However, if both are used, the else statement 

must come after the elseif statement to take care of all 

conditions that might be unaccounted for.



Flowchart for the 
general if-

elseif-else

structure.



For example, suppose that y = log(x) for x > 10, y 

=sqrt(x) for 0 <= x <= 10, and y = exp(x) - 1 for 

x < 0. The following statements will compute y if x already 

has a scalar value.

if x > 10

y = log(x)

elseif x >= 0

y = sqrt(x)

else

y = exp(x) - 1

end



Strings and Conditional Statements 

A string is a variable that contains characters. Strings are 

useful for creating input prompts and messages and for 

storing and operating on data such as names and 

addresses.

To create a string variable, enclose the characters in single 

quotes.  For example, the string variable name is created as 

follows:

>>name = ’Leslie Student’

name =

Leslie Student



The following string, number, is not the same as the 

variable number created by typing number = 123.

>>number = ’123’

number =

123



The following prompt program uses the isempty(x)

function, which returns a 1 if the array x is empty and 0 

otherwise.

It also uses the input function, whose syntax is

x = input(’prompt’, ’string’)

This function displays the string prompt on the screen, waits 

for input from the keyboard, and returns the entered value in 
the string variable x.

The function returns an empty matrix if you press the Enter 

key without typing anything.



The following prompt program is a script file that allows the 
user to answer Yes by typing either Y or y or by pressing the 

Enter key. Any other response is treated as a No answer.

response = input(’Do you want to continue? 

Y/N [Y]: ’,’s’);

if (isempty(response))|(response == 

’Y’)|(response == ’y’)

response = ’Y’

else

response = ’N’

end



for Loops

A simple example of a for loop is

for k = 5:10:35

x = k^2

end

The loop variable k is initially assigned the value 5, and x is 

calculated from x = k^2. Each successive pass through 

the loop increments k by 10 and calculates x until k exceeds 

35. Thus k takes on the values 5, 15, 25, and 35, and x

takes on the values 25, 225, 625, and 1225. The program 

then continues to execute any statements following the end 

statement.



Flowchart of a 

for Loop.



Note the following rules when using for loops with the loop 
variable expression k = m:s:n:

· The step value s may be negative. 

Example: k = 10:-2:4 produces k = 10, 8, 6, 4.

·   If s is omitted, the step value defaults to one.

· If s is positive, the loop will not be executed if m is greater 

than n.

· If s is negative, the loop will not be executed if m is less 

than n.

· If m equals n, the loop will be executed only once.

· If the step value s is not an integer, round-off errors can 

cause the loop to execute a different number of 

passes than intended.



For example, the following code uses a continue statement 

to avoid computing the logarithm of a negative number.

x = [10,1000,-10,100];

y = NaN*x;

for k = 1:length(x)

if x(k) < 0

continue

end

y(k) = log10(x(k));

end

y

The result is y = 1, 3, NaN, 2.



We can often avoid the use of loops and branching and thus 

create simpler and faster programs by using a logical array 

as a mask that selects elements of another array. Any 

elements not selected will remain unchanged.
The following session creates the logical array C from the 

numeric array A given previously.

>>A = [0, -1, 4; 9, -14, 25; -34, 49, 64];

>>C = (A >= 0);

The result is

C =

1   0   1

1   0   1

0   1   1



We can use this mask technique to compute the square 
root of only those elements of A given in the previous 

program that are no less than 0 and add 50 to those 

elements that are negative. The program is

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];

C = (A >= 0);

A(C) = sqrt(A(C))

A(~C) = A(~C) + 50



while Loops

The while loop is used when the looping process 

terminates because a specified condition is satisfied, and 

thus the number of passes is not known in advance. A 

simple example of a while loop is

x = 5;

while x < 25

disp(x)

x = 2*x - 1;

end

The results displayed by the disp statement are 5, 9, and 

17.



The typical structure of a while loop follows.

while logical expression

statements

end

For the while loop to function properly, the following two 

conditions must occur:

1. The loop variable must have a value before the while 

statement is executed.

2.  The loop variable must be changed somehow by the 

statements.



Flowchart of 

the while

loop.



The Editor/Debugger containing two programs to be 

analyzed.  


