
Introduction to MATLAB

for Engineers, Third Edition

Chapter 5
Advanced Plotting

PowerPoint to accompany

Copyright © 2010. The McGraw-Hill Companies, Inc.

An Example: The following MATLAB session plots y

= 0.4 1.8x for 0  x  52, where y represents the

height of a rocket after launch, in miles, and x is

the horizontal (downrange) distance in miles.

>>x = 0:0.1:52;

>>y = 0.4*sqrt(1.8*x);

>>plot(x,y)

>>xlabel(’Distance (miles)’)

>>ylabel(’Height (miles)’)

>>title(’Rocket Height as a Function of

Downrange Distance’)

5-3

The resulting plot is shown on the next slide.

The autoscaling feature in MATLAB selects tick-mark

spacing.

5-4

The plot will appear in the Figure window. You can

obtain a hard copy of the plot in several ways:

1. Use the menu system. Select Print on the File

menu in the Figure window. Answer OK when you

are prompted to continue the printing process.
2. Type print at the command line. This command

sends the current plot directly to the printer.

3. Save the plot to a file to be printed later or

imported into another application such as a word

processor. You need to know something about

graphics file formats to use this file properly. See

the subsection Exporting Figures.

5-5

When you have finished with the plot, close the

figure window by selecting Close from the File

menu in the figure window.

Note that using the Alt-Tab key combination in

Windows-based systems will return you to the

Command window without closing the figure

window.

If you do not close the window, it will not reappear
when a new plot command is executed.

However, the figure will still be updated.

5-6

Requirements for a Correct Plot

The following list describes the essential features of any

plot:

1. Each axis must be labeled with the name of the

quantity being plotted and its units! If two or more

quantities having different units are plotted (such as

when plotting both speed and distance versus time),

indicate the units in the axis label if there is room, or in

the legend or labels for each curve.

2. Each axis should have regularly spaced tick marks at

convenient intervals—not too sparse, but not too

dense—with a spacing that is easy to interpret and

interpolate. For example, use 0.1, 0.2, and so on,

rather than 0.13, 0.26, and so on.

5-7
(continued …)

3. If you are plotting more than one curve or data set,

label each on its plot or use a legend to distinguish

them.

4. If you are preparing multiple plots of a similar type or

if the axes’ labels cannot convey enough information,

use a title.

5. If you are plotting measured data, plot each data

point with a symbol such as a circle, square, or cross

(use the same symbol for every point in the same

data set). If there are many data points, plot them

using the dot symbol.

5-8

Requirements for a Correct Plot (continued)

(continued …)

6. Sometimes data symbols are connected by lines to

help the viewer visualize the data, especially if there

are few data points. However, connecting the data

points, especially with a solid line, might be

interpreted to imply knowledge of what occurs

between the data points. Thus you should be careful

to prevent such misinterpretation.

7. If you are plotting points generated by evaluating a

function (as opposed to measured data), do not use

a symbol to plot the points. Instead, be sure to

generate many points, and connect the points with

solid lines.

5-9

Requirements for a Correct Plot (continued)

The grid and axis Commands

The grid command displays gridlines at the tick marks

corresponding to the tick labels. Type grid on to add

gridlines; type grid off to stop plotting gridlines. When

used by itself, grid toggles this feature on or off, but

you might want to use grid on and grid off to be

sure.

You can use the axis command to override the

MATLAB selections for the axis limits. The basic syntax
is axis([xmin xmax ymin ymax]). This command

sets the scaling for the x- and y-axes to the minimum

and maximum values indicated. Note that, unlike an

array, this command does not use commas to separate

the values.

5-10

Example of a Figure window.

5-11

The fplot command is a “smart” plotting function.

5-12

The function in Figure generated with the plot command,

which gives more control than the fplot command.

5-13

Plotting Polynomials with the polyval Function.

To plot the polynomial 3x5 + 2x4 – 100x3 + 2x2 – 7x + 90

over the range –6  x  6 with a spacing of 0.01, you type

>>x = -6:0.01:6;

>>p = [3,2,-100,2,-7,90];

>>plot(x,polyval(p,x)),xlabel(’x’), ...

ylabel(’p’)

5-14

Saving Figures

To save a figure that can be opened in subsequent

MATLAB sessions, save it in a figure file with the .fig

file name extension.

To do this, select Save from the Figure window File

menu or click the Save button (the disk icon) on the

toolbar.

If this is the first time you are saving the file, the Save

As dialog box appears. Make sure that the type is

MATLAB Figure (*.fig). Specify the name you want
assigned to the figure file. Click OK.

5-15

Exporting Figures

To save the figure in a format that can be used by

another application, such as the standard graphics file

formats TIFF or EPS, perform these steps.

1. Select Export Setup from the File menu. This dialog

lets you specify options for the output file, such as the

figure size, fonts, line size and style, and output format.

2. Select Export from the Export Setup dialog. A

standard Save As dialog appears.

3. Select the format from the list of formats in the Save

As type menu. This selects the format of the exported

file and adds the standard file name extension given to

files of that type.

4. Enter the name you want to give the file, less the

extension. Then click Save.

5-16

On Windows systems, you can also copy a figure to

the clipboard and then paste it into another

application:

1. Select Copy Options from the Edit menu. The

Copying Options page of the Preferences dialog

box appears.

2. Complete the fields on the Copying Options

page and click OK.

3. Select Copy Figure from the Edit menu.

5-17

Hints for Improving Plots

The following actions, while not required, can

nevertheless improve the appearance of your plots:

1. Start scales from zero whenever possible. This

technique prevents a false impression of the

magnitudes of any variations shown on the plot.

2. Use sensible tick-mark spacing. If the quantities are

months, choose a spacing of 12 because 1/10 of a

year is not a convenient division. Space tick marks as

close as is useful, but no closer. If the data is given

monthly over a range of 24 months, 48 tick marks

might be too dense, and also unnecessary.

5-18
(continued …)

3. Minimize the number of zeros in the data being

plotted. For example, use a scale in millions of dollars

when appropriate, instead of a scale in dollars with

six zeros after every number.

4. Determine the minimum and maximum data values

for each axis before plotting the data. Then set the

axis limits to cover the entire data range plus an

additional amount to allow convenient tick-mark

spacing to be selected.

For example, if the data on the x-axis ranges from 1.2

to 9.6, a good choice for axis limits is 0 to 10. This

choice allows you to use a tick spacing of 1 or 2.

5-19

Hints for Improving Plots (continued)

(continued …)

5. Use a different line type for each curve when

several are plotted on a single plot and they cross

each other; for example, use a solid line, a dashed

line, and combinations of lines and symbols. Beware

of using colors to distinguish plots if you are going to

make black-and-white printouts and photocopies.

6. Do not put many curves on one plot, particularly if

they will be close to each other or cross one another

at several points.

7. Use the same scale limits and tick spacing on each

plot if you need to compare information on more

than one plot.

5-20

Hints for Improving Plots (continued)

Subplots

You can use the subplot command to obtain several

smaller “subplots” in the same figure. The syntax is
subplot(m,n,p). This command divides the Figure

window into an array of rectangular panes with m rows
and n columns. The variable p tells MATLAB to place

the output of the plot command following the

subplot command into the pth pane.

For example, subplot(3,2,5) creates an array of six

panes, three panes deep and two panes across, and

directs the next plot to appear in the fifth pane (in the

bottom-left corner).

5-21

The following script file created Figure 5.2–1, which shows

the plots of the functions y = e-1.2x sin(10x + 5) for 0  x  5

and y = |x3 - 100| for -6  x  6.

x = 0:0.01:5;

y = exp(-1.2*x).*sin(10*x+5);

subplot(1,2,1)

plot(x,y),axis([0 5 -1 1])

x = -6:0.01:6;

y = abs(x.^3-100);

subplot(1,2,2)

plot(x,y),axis([-6 6 0 350])

5-22

The figure is shown

on the next slide.

Application of the subplot command. Figure 5.2–1

5-23

Data Markers and Line Types

To plot y versus x with a solid line and u versus v with

a dashed line, type plot(x,y,u,v,’--’), where the

symbols ’--’ represent a dashed line.

Table gives the symbols for other line types.

To plot y versus x with asterisks (*) connected with a

dotted line, you must plot the data twice by typing
plot(x,y,’*’,x,y,’:’).

5-24

To plot y versus x with green asterisks (*) connected

with a red dashed line, you must plot the data twice by
typing plot(x,y,’g*’,x,y,’r--’).

5-25

Specifiers for data markers, line types, and colors.

Table

Data markers†

Dot (.)

Asterisk (*)

Cross ()

Circle ()

Plus sign (+)

Square ()

Diamond ()

Five-pointed star (w)

.

*



+

s

d

p

Line types

Solid line

Dashed line

Dash-dotted line

Dotted line

––

– –

– .

….

Colors

Black

Blue

Cyan

Green

Magenta

Red

White

Yellow

k

b

c

g

m

r

w

y

†Other data markers are available. Search for “markers” in MATLAB help.

5-26

Use of data markers.

5-27

Labeling Curves and Data

The legend command automatically obtains from

the plot the line type used for each data set and

displays a sample of this line type in the legend

box next to the string you selected. The following

script file produced the plot in Figure 5.2–3 (see

next slide).

x = 0:0.01:2;

y = sinh(x);

z = tanh(x);

plot(x,y,x,z,’--’),xlabel(’x’), ...

ylabel(’Hyperbolic Sine and

Tangent’), ...

legend(’sinh(x)’,’tanh(x)’)

5-28

Application of the legend command.

5-29

Application of the hold command.

5-30

Why use log scales? Rectilinear scales cannot properly

display variations over wide ranges.

5-31

A log-log plot can display wide variations in data values.

5-32

Logarithmic Plots

It is important to remember the following points when

using log scales:

1. You cannot plot negative numbers on a log scale,

because the logarithm of a negative number is not

defined as a real number.

2. You cannot plot the number 0 on a log scale,

because log10 0 = ln 0 = -. You must choose an

appropriately small number as the lower limit on the

plot.

5-33

(continued…)

3. The tick-mark labels on a log scale are the actual

values being plotted; they are not the logarithms of

the numbers. For example, the range of x values in

the plot in Figure is from 10-1 = 0.1 to 102 = 100.

4. Gridlines and tick marks within a decade are

unevenly spaced. If 8 gridlines or tick marks occur

within the decade, they correspond to values equal

to 2, 3, 4, . . . , 8, 9 times the value represented by

the first gridline or tick mark of the decade.

5-34

Logarithmic Plots (continued)

(continued…)

5. Equal distances on a log scale correspond to

multiplication by the same constant (as opposed to

addition of the same constant on a rectilinear

scale).

For example, all numbers that differ by a factor of 10

are separated by the same distance on a log

scale. That is, the distance between 0.3 and 3 is

the same as the distance between 30 and 300.

This separation is referred to as a decade or cycle.

The plot shown in Figure covers three decades in x

(from 0.1 to 100) and four decades in y and is thus

called a four-by-three-cycle plot.

5-35

Logarithmic Plots (continued)

MATLAB has three commands for generating

plots having log scales. The appropriate

command depends on which axis must have a

log scale.

1. Use the loglog(x,y) command to have both

scales logarithmic.

2. Use the semilogx(x,y) command to have the

x scale logarithmic and the y scale rectilinear.

3. Use the semilogy(x,y) command to have the

y scale logarithmic and the x scale rectilinear.

5-36

Command

bar(x,y)

plotyy(x1,y1,x2,y2)

polar(theta,r,’type’)

stairs(x,y)

stem(x,y)

Description

Creates a bar chart of y versus x.

Produces a plot with two y-axes, y1

on the left and y2 on the right.

Produces a polar plot from the polar
coordinates theta and r, using the

line type, data marker, and colors
specified in the string type.

Produces a stairs plot of y versus x.

Produces a stem plot of y versus x.

Specialized plot commands.

5-37

Exponential and Power Functions Plotted on

Log Scales

5-38

A polar plot showing an orbit having an eccentricity of 0.5.

5-39

Interactive Plotting in MATLAB

This interface can be advantageous in situations where:

 You need to create a large number of different types of

plots,

 You must construct plots involving many data sets,

 You want to add annotations such as rectangles and

ellipses, or

 You want to change plot characteristics such as tick

spacing, fonts, bolding, italics, and colors.

5-42

The interactive plotting environment in MATLAB is a set of

tools for:

 Creating different types of graphs,

 Selecting variables to plot directly from the Workspace

Browser,

 Creating and editing subplots,

 Adding annotations such as lines, arrows, text,

rectangles, and ellipses, and

 Editing properties of graphics objects, such as their color,

line weight, and font.

5-43

The Figure toolbar displayed.

5-44

The Figure and Plot Edit toolbars displayed.

5-45

The Plot Tools interface includes the following three

panels associated with a given figure.

 The Figure Palette: Use this to create and arrange

subplots, to view and plot workspace variables, and to

add annotations.

 The Plot Browser: Use this to select and control the

visibility of the axes or graphics objects plotted in the

figure, and to add data for plotting.

 The Property Editor: Use this to set basic properties

of the selected object and to obtain access to all

properties through the Property Inspector.

5-46

The Figure window with the Plot Tools

activated.

5-47

Three-Dimensional Line Plots:

The following program uses the plot3 function to

generate the spiral curve shown in Figure.

>>t = 0:pi/50:10*pi;

>>plot3(exp(-0.05*t).*sin(t),...

exp(-0.05*t).*cos(t),t),...

xlabel(’x’),ylabel(’y’),zlabel(’z’),grid

5-48

See the next slide.

The curve x = e-0.05t sin t, y = e-0.05t cos t, z = t plotted with the
plot3 function.

5-49

Surface Plots:

The following session shows how to generate the

surface plot of the function z = xe-[(x-y2)2+y2], for -2  x  2

and -2  y  2, with a spacing of 0.1. This plot appears in

Figure 5.4–2, page 248.

>>[X,Y] = meshgrid(-2:0.1:2);

>>Z = X.*exp(-((X-Y.^2).^2+Y.^2));

>>mesh(X,Y,Z),xlabel(’x’),ylabel(’y’),...

zlabel(’z’)

5-50

See the next slide.

A plot of the surface z = xe-[(x-y2)2+y2] created with the mesh

function.

5-51

The following session generates the contour plot of the

function whose surface plot is shown in Figure; namely, z

= xe-[(x-y2)2+y2], for -2  x  2 and -2  y  2, with a

spacing of 0.1. This plot appears in Figure 5.4–3, page

249.

>>[X,Y] = meshgrid(-2:0.1:2);

>>Z = X.*exp(-((X- Y.^2).^2+Y.^2));

>>contour(X,Y,Z),xlabel(’x’),ylabel(’y’)

5-52

See the next slide.

A contour plot of the surface z = xe-[(x-y2)2+y2] created with the
contour function.

5-53

Function

contour(x,y,z)

mesh(x,y,z)

meshc(x,y,z)

meshz(x,y,z)

surf(x,y,z)

surfc(x,y,z)

[X,Y] = meshgrid(x,y)

[X,Y] = meshgrid(x)

waterfall(x,y,z)

Description

Creates a contour plot.

Creates a 3D mesh surface plot.

Same as mesh but draws contours under the

surface.

Same as mesh but draws vertical reference lines

under the surface.

Creates a shaded 3D mesh surface plot.

Same as surf but draws contours under the

surface.

Creates the matrices X and Y from the vectors x

and y to define a rectangular grid.

Same as [X,Y]= meshgrid(x,x).

Same as mesh but draws mesh lines in one

direction only.

Three-dimensional plotting functions.

5-54

Plots of the surface z = xe-(x2+y2) created with the mesh

function and its variant forms: meshc, meshz, and

waterfall. a) mesh, b) meshc, c) meshz, d) waterfall.

5-55

